30 research outputs found

    Effects of attention on the control of locomotion in individuals with chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People who suffer from low back pain (LBP) exhibit an abnormal gait pattern, characterized by shorter stride length, greater step width, and an impaired thorax-pelvis coordination which may undermine functional walking. As a result, gait in LBP may require stronger cognitive regulation compared to pain free subjects thereby affecting the degree of automaticity of gait control. Conversely, because chronic pain has a strong attentional component, diverting attention away from the pain might facilitate a more efficient walking pattern.</p> <p>Methods</p> <p>Twelve individuals with LBP and fourteen controls participated. Subjects walked on a treadmill at comfortable speed, under varying conditions of attentional load: (a) no secondary task, (b) naming the colors of squares on a screen, (c) naming the colors of color words ("color Stroop task"), and (d) naming the colors of words depicting motor activities. Markers were attached to the thorax, pelvis and feet. Motion was recorded using a three-camera SIMI system with a sample frequency of 100 Hz. To examine the effects of health status and attention on gait, mean and variability of stride parameters were calculated. The coordination between thoracic and pelvic rotations was quantified through the mean and variability of the relative phase between those oscillations.</p> <p>Results</p> <p>LBP sufferers had a lower walking speed, and consequently a smaller stride length and lower mean thorax-pelvis relative phase. Stride length variability was significantly lower in the LBP group but no significant effect of attention was observed. In both groups gait adaptations were found under performance of an attention demanding task, but significantly more so in individuals with LBP as indicated by an interaction effect on relative phase variability.</p> <p>Conclusion</p> <p>Gait in LBP sufferers was characterized by less variable upper body movements. The diminished flexibility in trunk coordination was aggravated under the influence of an attention demanding task. This provides further evidence that individuals with LBP tighten their gait control, and this suggests a stronger cognitive regulation of gait coordination in LBP. These changes in gait coordination reduce the capability to deal with unexpected perturbations, and are therefore maladaptive.</p

    Gait in Pregnancy-related Pelvic girdle Pain: amplitudes, timing, and coordination of horizontal trunk rotations

    Get PDF
    Walking is impaired in Pregnancy-related Pelvic girdle Pain (PPP). Walking velocity is reduced, and in postpartum PPP relative phase between horizontal pelvis and thorax rotations was found to be lower at higher velocities, and rotational amplitudes tended to be larger. While attempting to confirm these findings for PPP during pregnancy, we wanted to identify underlying mechanisms. We compared gait kinematics of 12 healthy pregnant women and 12 pregnant women with PPP, focusing on the amplitudes of transverse segmental rotations, the timing and relative phase of these rotations, and the amplitude of spinal rotations. In PPP during pregnancy walking velocity was lower than in controls, and negatively correlated with fear of movement. While patients’ rotational amplitudes were larger, with large inter-individual differences, spinal rotations did not differ between groups. In the patients, peak thorax rotation occurred earlier in the stride cycle at higher velocities, and relative phase was lower. The earlier results on postpartum PPP were confirmed for PPP during pregnancy. Spinal rotations remained unaffected, while at higher velocities the peak of thorax rotations occurred earlier in the stride cycle. The latter change may serve to avoid excessive spine rotations caused by the larger segmental rotations

    Gait adaptations in low back pain patients with lumbar disc herniation: Trunk coordination and arm swing

    Get PDF
    Patients with chronic non-specific low back pain (LBP) walk with more synchronous (in-phase) horizontal pelvis and thorax rotations than controls. Low thorax-pelvis relative phase in these patients appears to result from in-phase motion of the thorax with the legs, which was hypothesized to affect arm swing. In the present study, gait kinematics were compared between LBP patients with lumbar disc herniation and healthy controls during treadmill walking at different speeds and with different step lengths. Movements of legs, arms, and trunk were recorded. The patients walked with larger pelvis rotations than healthy controls, and with lower relative phase between pelvis and thorax horizontal rotations, specifically when taking large steps. They did so by rotating the thorax more in-phase with the pendular movements of the legs, thereby limiting the amplitudes of spine rotation. In the patients, arm swing was out-of phase with the leg, as in controls. Consequently, the phase relationship between thorax rotations and arm swing was altered in the patients. © The Author(s) 2010

    An experimental study investigating the effect of pain relief from oral analgesia on lumbar range of motion, velocity, acceleration and movement irregularity

    Get PDF
    Background Movement alterations are often reported in individuals with back pain. However the mechanisms behind these movement alterations are not well understood. A commonly cited mechanism is pain. The aim of this study was to investigate the effect of pain reduction, from oral analgesia, on lumbar kinematics in individuals with acute and chronic low back pain. Methods A prospective, cross-sectional, experimental repeated-measures design was used. Twenty acute and 20 chronic individuals with low back pain were recruited from General Practitioner and self-referrals to therapy departments for low back pain. Participants complained of movement evoked low back pain. Inertial sensors were attached to the sacrum and lumbar spine and used to measure kinematics. Kinematic variables measured were range of motion, angular velocity and angular acceleration as well as a determining movement irregularity (a measure of deviation from smooth motion). Kinematics were investigated before and after administration of oral analgesia to instigate pain reduction. Results Pain was significantly reduced following oral analgesia. There were no significant effects on the kinematic variables before and after pain reduction from oral analgesia. There was no interaction between the variables group (acute and chronic) and time (pre and post pain reduction). Conclusion The results demonstrate that pain reduction did not alter lumbar range of motion, angular velocity, angular acceleration or movement irregularity questioning the role of pain in lumbar kinematics

    Standing task difficulty related increase in agonist-agonist and agonist-antagonist common inputs are driven by corticospinal and subcortical inputs respectively

    No full text
    In standing, coordinated activation of lower extremity muscles can be simplified by common neural inputs to muscles comprising a functional synergy. We examined the effect of task difficulty on common inputs to agonist-agonist (AG-AG) pairs supporting direction specific reciprocal muscle control and agonist-antagonist (AG-ANT) pairs supporting stiffness control. Since excessive stiffness is energetically costly and limits the flexibility of responses to perturbations, compared to AG-ANT, we expected greater AG-AG common inputs and a larger increase with increasing task difficulty. We used coherence analysis to examine common inputs in three frequency ranges which reflect subcortical/spinal (0-5 and 6-15 Hz) and corticospinal inputs (6-15 and 16-40 Hz). Coherence was indeed higher in AG-AG compared to AG-ANT muscles in all three frequency bands, indicating a predilection for functional synergies supporting reciprocal rather than stiffness control. Coherence increased with increasing task difficulty, only in AG-ANT muscles in the low frequency band (0-5 Hz), reflecting subcortical inputs and only in AG-AG group in the high frequency band (16-40 Hz), reflecting corticospinal inputs. Therefore, common neural inputs to both AG-AG and AG-ANT muscles increase with difficulty but are likely driven by different sources of input to spinal alpha motor neurons

    Stability and variability of acoustically specified coordination patterns while walking side-by-side on a treadmill: Does the seagull effect hold?

    No full text
    To examine whether the Haken–Kelso–Bunz model for rhythmic interlimb coordination applies to walking side-by-side on a treadmill, we invited six pairs of participants to coordinate their stepping movements at seven prescribed relative phases (between 0◦ and 180◦) to scan the attractor layout governing their coordination. Two auditory metronomes, one for each participant, specified the required relative phase. For each trial participants were instructed to synchronize their left heel strikes with the beeps of the metronome (2 min) and to continue walking after the metronome stopped (1 min). If the Haken–Kelso–Bunz model applies to interpersonal coordination during treadmill walking, then (1) the variability of in- and antiphase should be minimal, (2) intermediate relative phases should be attracted to either in- or antiphase, and (3) the absolute shift away from the required relative phase should be greatest for a required relative phase of 90◦. Only the third of these hypotheses was confirmed, indicating that the dynamical model for rhythmic interlimb coordination does not readily apply, at least not generically or robustly, to interpersonal coordination during walking side-by-side on a treadmill

    In Standing, Corticospinal Excitability Is Proportional to COP Velocity Whereas M1 Excitability Is Participant-Specific

    No full text
    Reductions in the base of support (BOS) make standing difficult and require adjustments in the neural control of sway. In healthy young adults, we determined the effects of reductions in mediolateral (ML) BOS on peroneus longus (PL) motor evoked potential (MEP), intracortical facilitation (ICF), short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI) using transcranial magnetic stimulation (TMS). We also examined whether participant-specific neural excitability influences the responses to increasing standing difficulty. Repeated measures ANOVA revealed that with increasing standing difficulty MEP size increased, SICI decreased (both p &lt; 0.05) and ICF trended to decrease (p = 0.07). LICI decreased only in a sub-set of participants, demonstrating atypical facilitation. Spearman's Rank Correlation showed a relationship of ρ = 0.50 (p = 0.001) between MEP size and ML center of pressure (COP) velocity. Measures of M1 excitability did not correlate with COP velocity. LICI and ICF measured in the control task correlated with changes in LICI and ICF, i.e., the magnitude of response to increasing standing difficulty. Therefore, corticospinal excitability as measured by MEP size contributes to ML sway control while cortical facilitation and inhibition are likely involved in other aspects of sway control while standing. Additionally, neural excitability in standing is determined by an interaction between task difficulty and participant-specific neural excitability
    corecore